

Open Source Firmware Testing at Facebook
If you don’t test your firmware, your firmware fails you

Andrea Barberio (barberio@fb.com)
Production Engineer, Facebook

Marco Guerri, (marcoguerri@fb.com)
Production Engineer, Facebook

OSF

● Problem statement
● Requirements
● Solution
● Architecture

Agenda
OPEN SYSTEM

FIRMWARE

● We run OSF in production[1]
● Development happens upstream (GitHub, Gerrit)
● Process:

○ develop
○ build
○ integration and end-to-end tests
○ review
○ release
○ debug

[1] https://engineering.fb.com/data-center-engineering/f16-minipack/

Problem statement
OPEN SYSTEM

FIRMWARE

https://engineering.fb.com/data-center-engineering/f16-minipack/

Development timeline
OPEN SYSTEM

FIRMWARECode
Change

Build/Unit
Tests

Integ/e2e
Tests

Code
Review

Merge

Development timeline
OPEN SYSTEM

FIRMWARECode
Change

Build/Unit
Tests

Integ/e2e
Tests

Code
Review

Merge

Import Build/Unit
Tests

Integ/e2e
Tests

Release
Candidate Canary Release

● Pretty obvious with software. But firmware?
● Bugs can brick many devices. Reduced capacity
● Rolling out firmware takes longer than software
● Firmware influences the machine’s behaviour and performances

Why testing firmware?
OPEN SYSTEM

FIRMWARE

We want a firmware testing system that is
● Robust: minimize failures in prod, detect errors early
● Generic: can work in any infrastructure
● Scalable: can run at datacenter scale
● Simple by design: easier to reason with, and to understand
● Flexible: assembled from independent components

Requirements (1/2)
OPEN SYSTEM

FIRMWARE

● Easy to set up and maintain: single binary, simple DB
● Easy to use: configuration, not code
● Open-source first: together is better!
● Working with OSF, but not limited to them

Requirements (2/2)
OPEN SYSTEM

FIRMWARE

● We looked at several existing systems
● Difficult to meet all the requirements. Mainly:

○ hard to set up
○ hard to maintain
○ complex to use
○ DUT-only test cases
○ too scoped functionalities

What about existing systems?
OPEN SYSTEM

FIRMWARE

● Continuous and on-demand integration and e2e Testing
● Single binary plus SQL database
● Written in pure Go for ease and memory safety
● Can do more than firmware testing
● https://github.com/facebookincubator/contest

Enter ConTest
OPEN SYSTEM

FIRMWARE

https://github.com/facebookincubator/contest

{
 “JobName”: “My test job”,
 “Runs”: 3,
 “Tags”: [“firmware”, “ocp”, “minipack”],
 “TestDescriptors”: {
 ...
 },
 “Reporting”: {
 …
 }
}

Job Descriptor
OPEN SYSTEM

FIRMWARE

“TargetManagerName”: “URI”,
“TargetManagerAcquireParameters”: {
 “URI”: “https://example.org/targetmanagers/my-test.json”,
},
“TestFetcherName”: “literal”,
“TestFetcherParameters”: {
 “Steps”: [
 {“Name”: “sshcmd”, “host”: “jump.example.org”, “executable”: “ls”},
 {“Name”: “sshcmd”, “host”: “jump.example.org”, “executable”: “flashrom”},
]
}

Test descriptors
OPEN SYSTEM

FIRMWARE

“Reporting”: {
 “RunReporters”: {
 {
 “Name”: “TargetSuccess”, “Parameters”: {“SuccessExpression”: “>=95%” },
 }
 },
 “FinalReporters”: {
 {
 “Name”: “AverageTime”, “Parameters”: { },
 “Name”: “Outliers”, “Parameters”: {“start”: “RebootStart”, “end”: “RebootEnd”},
 }
 }
}

Reporting
OPEN SYSTEM

FIRMWARE

Architecture - Overview
OPEN SYSTEM

FIRMWARE

Listener (HTTPS,
Thrift, gRPC)

Target
Manager

TestRunner

TestStep1

TestStep2

TestStep3

API

Pluggable logic

User submits job
request with a
Job Descriptor

(JSON)

TestFetcher

Events

Storage Core framework

Reporter(s)

TargetLocking

Job API

JobManager

ConTest instance acquires
ownership of targets

Fetch a description of the
test steps and associated
parameters.

Based on the description of
the test, a pipeline is setup.
The TestRunner orchestrates
the flow of Targets through
the various steps.

A reporter(s) are invoked to
generate custom description(s)
of the outcome of the test.

Architecture - Test Runner
OPEN SYSTEM

FIRMWARE

Test
Step

Control
Block Err Event

TT
In

Out

T

Test
Step

Control
Block Err Event

TT
In

Out

T

The TestRunner controls the flow of Targets through
the TestSteps.

A ControlBlock is associated to each TestStep to
monitor the behavior of the plugin:

● Records success or failure of a Target via out
and err channels

● Records Targets ingress and egress
timestamps

● Enforces that targets fed to the TestStep must
be returned in output

● Enforces that targets fed in input must be
accepted with a timeout

Interfaces and plugins
OPEN SYSTEM

FIRMWARE
● Plugins must implement interfaces and meet requirements for

I/O on channels, return values, timeouts, etc.
○ ConTest enforces that a job is terminated when a

plugin does not comply with the requirements
● Interfaces are designed to allow for early validation of

parameters
● Components are easily swappable, integration

tests can use custom components that validate
the logic of the framework

<<interface>>

ValidateParameters(...) error
[...]

Call to Action
• Get involved! https://github.com/facebookincubator/contest
• Try it in your own infrastructure, or even at home
• Help us set up a public testing infrastructure
• Report bugs, implement new plugins, or suggest improvements

Open System Firmware:
● https://www.opencompute.org/projects/open-system-firmware
● https://ocp-all.groups.io/g/OCP-OSF

Contact us:
● Andrea Barberio <barberio@fb.com>
● Marco Guerri <marcoguerri@fb.com>

https://github.com/facebookincubator/contest
https://www.opencompute.org/projects/open-system-firmware
mailto:barberio@fb.com
mailto:marcoguerri@fb.com

